李玲龙

发布者:王琳发布时间:2021-07-26浏览次数:7234

李玲龙,副教授,博士生导师

课题组网页:https://www.x-mol.com/groups/lli

   

从事基于扫描探针的多场耦合物性调控研究。迄今以第一/通讯作者发表Nat. Mater.、Sci. Adv.Adv. Funct. Mater.等SCI 论文11篇。累计被引次数1000余次,h-index 16。获中国仪表功能材料学会  电子元器件关键材料与技术专业委员会“学术新秀奖”(2023)入选“博士后创新人才支持计划”(2018)多次在亚洲铁电会议等国内外会议上作邀请报告。

课题组结合扫描探针显微镜和低温强磁场下物性表征等手段,开展磁电功能材料物性调控的研究。实验室具备从材料生长,多尺度物性调控,到低温强磁场输运/扫描探针成像等实验研究平台。欢迎对材料物理实验感兴趣的同学联系: linglongli [AT] seu.edu.cn

工作经历:

202311- 至今  js666金沙大厅登录入口js666金沙大厅登录入口副教授

20214- 202310  js666金沙大厅登录入口js666金沙大厅登录入口副研究员

20185- 202011  清华大学物理系博士后研究员

教育经历:

20129- 20183    西安交通大学博士

20159- 20178    美国橡树岭国家实验室联合培养

20089- 20126    西安交通大学学士

荣誉奖项:

2023年,获中国仪表功能材料学会“学术新秀奖”

2018年,入选“博士后创新人才支持计划”

科研项目:

1,国家自然科学基金 青年基金项目,2022

2,江苏省自然科学基金 青年基金项目,2022

3,国家重点实验室 开放课题基金,2022

部分学术论文成果:

Researcher ID: F-5756-2013                  *为通讯作者,#为共同作者

16. A. Shen, H. Ye, Z. Wang, Z. Li, X. Luo, Y. Xing, J. Zhang, R. Zheng, S. Dong, L. Li*, M. Xu*,Reversible Nanocracks-Induced Resistive Switching Manipulated by Ferroelectric Polarizing in Te/PMN-PT Heterostructures. Applied Physics Letters, 124, 132904 (2024)

15. D. Zhang, L. Li, L. Wang, D. Sando, P. Sharma, J. Seidel*Engineering Domain Variants in 0.7Pb(Mg1/3Nb2/3)−0.3PbTiO3 Single Crystals Using High-Frequency AC Poling. Small Methods 2301257, (2024)

14. J. Zhang#, Z. Wang#, Y. Xing, X. Luo, Z. Wang, G. Wang, A. Shen, H. Ye, S. Dong*, L. Li*, Enhanced Magnetic and Electrical Properties of Co-doped Fe5GeTe2. Applied Physics Letters 124, 103103 (2024)

13. X. Luo, X. Ma, J. Zhang, Y. Xing, A. Shen, H. Ye, S. Shen, J. Peng, S. Cao, S. Dong, L. Li*, Investigation of de Haas–van Alphen and Shubnikov–de Haas quantum oscillations in PrTe3Physical Review B 109, 035121 (2024)

12. D. Zhang, L. Wang, L. Li, P. Sharma, J. Seidel, Varied domain structures in 0.7 Pb (Mg1/3Nb2/3) O3-0.3 PbTiO3 single crystals. Microstructures 3, 2023046 (2023)

11. F. Zhang, Y. Zhang, L. Li, X. Mou, H. Peng, S. Shen, M. Wang, K. Xiao, S.-H. Ji, D. Yi, T. Nan, J. Tang, P. Yu, Nanoscale multistate resistive switching in WO3 through scanning probe induced proton evolution. Nature Communications 14, 3950 (2023)

10. J. Peng, X. Yang, Z. Lu, L. Huang, X. Chen, M. He, J. Shen, Y. Xing, M. Liu, Z. Qu, Z. Wang, L. Li, S. Dong, J.-M. Liu, Ferromagnetism induced by magnetic dilution in van der Waals material metal thiophosphates. Advanced Quantum Technologies 6, 2200105 (2023)

9. X. Zeng, W. Kang, X. Zhou, L. Li, Y. Xia, H. Liu, C. Yang, Y. Wu, Z. Wu, J. Kang, Modulating the intralayer and interlayer valley excitons in WS2 through interaction with AlGaN. Science China Materials 66, 202–210 (2023)

8. X. Li, C. Yang, Y. Xia, X. Zeng, P. Shen, L. Li, F. Xu, D. Cai, Y. Wu, Z. Wu, S. Li, J. Kang, Nonvolatile Electrical Valley Manipulation in WS2 by Ferroelectric Gating. ACS Nano 16, 20598-20606 (2022)

7LLi, M. Wang, Y. Zhou, Y. Zhang, F. Zhang, Y. Wu, Y. Wang, Y. Lyu, N. Lu, G. Wang, H. Peng, S. Shen, Y. Du, Z. Zhu, C.-W. Nan, P. Yu*. Manipulating the insulator–metal transition through tip-induced hydrogenation. Nature Materials 21, 1246–1251 (2022).

6.L. Miao, N. Ding, N. Wang, C. Shi, H. Ye, L. Li, Y.-F. Yao, S. Dong*, and Y. Zhang*, Direct observation of geometric and sliding ferroelectricity in an amphidynamic crystal. Nature Materials 21, 1158–1164 (2022).

5.T. Li, C. Liu, P. Shi, X. Liu, R. Kang, C. Long, M. Wu, S. Cheng, S. Mi, Y. Xia, L. Li*, D. Wang*, and X. Lou*, High‐Performance Strain of Lead‐Free Relaxor‐Ferroelectric Piezoceramics by the Morphotropic Phase Boundary Modification. Advanced Functional Materials 32, 2202307 (2022).

4.LLi, et al. Construction of ternary core-shell Fe3O4@BaTiO3/PVDF nanocomposites with enhanced permittivity and breakdown strength for energy storage. Materials Chemistry and Physics 265, 124505 (2021).

3.L. Li, et al. Machine learning-enabled identification of material phase transitions based on experimental data: Exploring collective dynamics in ferroelectric relaxors. Science Advances 4, eaap8672 (2018).

2.LLi, et al. Direct Imaging of the Relaxation of Individual Ferroelectric Interfaces in a Tensile-Strained Film. Advanced Electronic Materials 3, 1600508 (2017).

1.LLi, et al. Direct Observation of Magnetic Field Induced Ferroelectric Domain Evolution in Self-Assembled Quasi (0-3) BiFeO3 –CoFe2O4 Thin Films. ACS Applied Material&Interfaces 8, 442–448 (2016).